Abstract
In the Hartree–Fock approximation and at total filling factor ν = 4 N + 1 , the ground state of the two-dimensional electron gas in a double quantum well system in a quantizing magnetic field is, in some range of interlayer distances, a coherent striped phase. This stripe phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton–antisoliton pairs using a supercell microscopic unrestricted Hartree–Fock approach. We study the energy gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton–antisoliton excitation energy is lower than the corresponding Hartree–Fock electron–hole pair energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.