Abstract
Electromagnetic topological insulators have been explored extensively due to the robust edge states they support. In this work, we propose a topological electromagnetic system based on a line defect in topologically nontrivial photonic crystals (PCs). With a finite-difference supercell approach, modal analysis of the PCs structure is investigated in detail. The topological line-defect states are pseudospin polarized and their energy flow directions are determined by the corresponding pseudospin helicities. These states can be excited by using two spatially-symmetric line-source arrays carrying orbital angular momenta. The feature of the unidirectional propagation is demonstrated and it is stable when disorders are introduced to the PCs structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.