Abstract

Graphene is a gapless semiconductor in which conduction and valence band wavefunctions differ only in the phase difference between their projections onto the two sublattices of the material's two-dimensional honeycomb crystal structure. We explain why this circumstance creates openings for broken symmetry states, including antiferromagnetic states in monolayer and bilayer graphene and exciton condensates in double-layer graphene, which are momentum space analogues of the real-space order common in systems with strong local interactions. We discuss some similarities among, and some differences between, these three broken symmetry states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.