Abstract
Graphene is a gapless semiconductor in which conduction and valence band wavefunctions differ only in the phase difference between their projections onto the two sublattices of the material's two-dimensional honeycomb crystal structure. We explain why this circumstance creates openings for broken symmetry states, including antiferromagnetic states in monolayer and bilayer graphene and exciton condensates in double-layer graphene, which are momentum space analogues of the real-space order common in systems with strong local interactions. We discuss some similarities among, and some differences between, these three broken symmetry states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.