Abstract

Abstract The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, where the vector potential can be introduced by the very high and very thin (δ-function) magnetic potential barriers. We show that, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent for pseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vector potential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-1 Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.