Abstract

Numerical mode solver using a pseudospectral scheme is developed for solving various nonlinear dielectric and plasmonic waveguides with arbitrary nonlinear media. Two nonlinear iterative approaches that use this scheme are implemented; these approaches assign the mode power and effective index as extracted eigenvalues. However, to obtain the complete power dispersion curve including the stable and unstable modal solutions, assigning the mode power as an eigenvalue for a given effective index is required. Moreover, the biaxial feature of the nonlinear refractive index is considered for solving the transverse magnetic (TM) modes in materials of practical interest. Furthermore, the proposed scheme solves the problem of nonlinear surface plasmons guided by a thin metal film with nonlinear cladding, and the mode characteristics of long- and short-range surface plasmon polaritons are analyzed. We also apply the proposed scheme to a 2D strip waveguide with a nonlinear saturation substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.