Abstract

Two direct pseudospectral methods based on nonclassical orthogonal polynomials are proposed for solving finite-horizon and infinite-horizon variational problems. In the proposed finite-horizon and infinite-horizon methods, the rate variables are approximated by the Nth degree weighted interpolant, using nonclassical Gauss-Lobatto and Gauss points, respectively. Exponential Freud type weights are introduced for both of nonclassical orthogonal polynomials and weighted interpolation. It is shown that the absolute error in weighted interpolation is dependent on the selected weight, and the weight function can be tuned to improve the quality of the approximation. In the finite-horizon scheme, the functional is approximated based on Gauss-Lobatto quadrature rule, thereby reducing the problem to a nonlinear programming one. For infinite-horizon problems, an strictly monotonic transformation is used to map the infinite domain onto a finite interval. We transcribe the transformed problem to a nonlinear programming using Gauss quadrature rule. Numerical examples demonstrate the accuracy of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.