Abstract

A pseudospectral formulation of the full configuration interaction method is presented in this paper. This represents the first application of the pseudospectral approximation to configuration interaction expansions. It is shown that a formal scaling advantage of n, the number of molecular orbital basis functions, is achieved. The spectral and pseudospectral total energies obtained for a series of first-row atoms and ions are compared. The relative operation counts of the spectral and pseudospectral methods are also discussed in this paper. Finally, two hybrid spectral/pseudospectral approximations that vastly improve the accuracy of the pseudospectral total energies are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call