Abstract

By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations. It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under non-local boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.