Abstract

AbstractThe carbon nanotube possesses outstanding physical properties. Theoretically, adding carbon nanotubes into a polymer matrix can remarkably improve the mechanical properties of the polymer matrix. In the present work, a series of composites was prepared by incorporating multiwalled carbon nanotubes (MWNTs) into an epoxy resin. The influences of MWNT content and curing temperature on the flexural properties of the epoxy resin were investigated. The results showed that a very low MWNT content should be used to ensure homogeneous dispersion of MWNTs in the epoxy matrix. A higher MWNT content may lead to deteriorated mechanical properties of the composites because of the aggregation of MWNTs. A decline in the flexural properties of the neat epoxy resin with increasing curing temperature was found. However, under the same curing conditions, improvement in flexural properties was observed for the composite with the low MWNT content and a mild curing temperature. The improvement was far beyond the predictions of the traditional short‐fiber composite theory. In fact, this improvement should be attributed to the retarding effect of MWNTs on the curing reaction of epoxy matrix. Therefore, the improvement in the flexural properties was only a pseudoreinforcement effect, not a nano‐reinforcement effect of the MWNTs on the epoxy resin. Perhaps, it is better for MWNTs to be used as functional fillers, such as electrical or thermal conductive fillers, than as reinforcements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3664–3672, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.