Abstract

Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073 deg/√h and a drift of 0.023 deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call