Abstract
We propose a new class of cellular automata, self-programming cellular automata (SPCA), with specific application to pseudorandom number generation. By changing a cell's state transition rules in relation to factors such as its neighboring cell's states, behavioral complexity can be increased and utilized. Interplay between the state transition neighborhood and rule selection neighborhood leads to a new composite neighborhood and state transition rule that is the linear combination of two different mappings with different temporal dependencies. It is proved that when the transitional matrices for both the state transition and rule selection neighborhood are nonsingular, SPCA will not exhibit nongroup behavior. Good performance can be obtained using simple neighborhoods with certain CA length, transition rules, etc. Certain configurations of SPCA pass all DIEHARD and ENT tests with an implementation cost lower than current reported work. Output sampling methods are also suggested to improve output efficiency by sampling the outputs of the new rule selection neighborhoods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.