Abstract
We present a new approach to constructing pseudorandom generators that fool low-degree polynomials over finite fields, based on the Gowers norm. Using this approach, we obtain the following main constructions of explicitly computable generators $G:\mathbb{F}^s\to\mathbb{F}^n$ that fool polynomials over a finite field $\mathbb{F}$: We stress that the results in (1) and (2) are unconditional, i.e., do not rely on any unproven assumption. Moreover, the results in (3) rely on a special case of the conjecture which may be easier to prove. Our generator for degree-d polynomials is the componentwise sum of d generators for degree-1 polynomials (on independent seeds). Prior to our work, generators with logarithmic seed length were only known for degree-1 (i.e., linear) polynomials [J. Naor and M. Naor, SIAM J. Comput., 22 (1993), pp. 838–856]. In fact, over small fields such as $\mathbb{F}_2=\{0,1\}$, our results constitute the first progress on these problems since the long-standing generator by Luby, Veličković, and Wigderson [Deterministic approximate counting of depth-2 circuits, in Proceedings of the 2nd Israeli Symposium on Theoretical Computer Science (ISTCS), 1993, pp. 18–24], whose seed length is much bigger: $s=\exp\left(\Omega\left(\sqrt{\log n}\right)\right)$, even for the case of degree-2 polynomials over $\mathbb{F}_2$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.