Abstract
We exhibit an explicitly computable pseudorandom generator stretching l bits into $m(l) = l^{\Omega(\log l)}$ bits that look random to constant‐depth circuits of size $m(l)$ with $\log m(l)$ arbitrary symmetric gates (e.g., PARITY, MAJORITY). This improves on a generator by Luby, Velickovic, and Wigderson [Proceedings of the Second Israel Symposium on Theory of Computing Systems, 1993, pp. 18–24] that achieves the same stretch but fools only circuits of depth 2 with one arbitrary symmetric gate at the top. Our generator fools a strictly richer class of circuits than Nisan’s generator for constant‐depth circuits (but Nisan’s generator has a much bigger stretch) [Combinatorica, 11 (1991), pp. 63–70]. In particular, we conclude that every function computable by uniform $\poly(n)$‐size probabilistic constant‐depth circuits with $O(\log n)$ arbitrary symmetric gates is in $\mathit{TIME}(2^{n^{o(1)}})$. This seems to be the richest probabilistic circuit class known to admit a subexponential derandomization. Our generator is obtained by constructing an explicit function $f : \zo^n \to \zo$ that is very hard on average for constant‐depth circuits of size $s(n) = n^{\Omega(\log n)}$ with $\log s(n)$ arbitrary symmetric gates, and plugging it into the Nisan–Wigderson pseudorandom generator construction [J. Comput. System Sci., 49 (1994), pp. 149–167]. The proof of the average‐case hardness of this function is a modification of arguments by Razborov and Wigderson [Inform. Process. Lett., 45 (1993), pp. 303–307] and Hansen and Miltersen [Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 3153, Springer‐Verlag, Berlin, 2004, pp. 334–345] and combines Håstad’s switching lemma [Computational Limitations of Small‐Depth Circuits, MIT Press, Cambridge, MA, 1987] with a multiparty communication complexity lower bound by Babai, Nisan, and Szegedy [J. Comput. System Sci., 45 (1992), pp. 204–232].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.