Abstract

A proteoglycan (PG) monomer is a macromolecule consisting of one or more glycosaminoglycan (GAG) chains attached to a core protein. PGs have signaling roles and modulatory functions in the extracellular matrix and at the cell surface. To elucidate the functions of higher-order PG structures, pseudoPGs that imitate the PG structure were prepared to develop probes and affinity adsorbents. Poly-L: -lysine (PLL) or polyacrylamide (PAA) was coupled with various GAGs, then biotinylated, and the remaining amino groups were blocked to obtain the pseudoPG probes, biotinyl PLL (BPL)- or PAA (BPA)-GAGs. Lactoferrin exhibited 30-times higher affinity toward BPL-heparin than the conventional single-strand probe, biotin-hydrazide-heparin. Heparin-PLL was immobilized on a formyl-Sepharose and compared with the Hep-Sepharose in which heparin was directly immobilized to amino-Sepharose. Screening for ligands in normal rat brain revealed several proteins that specifically bound to either of the two adsorbents, indicating that the heparin-binding proteins exhibit specific recognition depending on the higher-order structure of the PG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.