Abstract

With the advent of high-speed computing, there is a rekindled interest in the problem of determining when a given whole number N > 1 N > 1 is prime or composite. While complex algorithms have been developed to settle this for 200-digit numbers in a matter of minutes with a supercomputer, there is a need for simpler, more practical algorithms for dealing with numbers of a more modest size. Such practical tests for primality have recently been given (running in deterministic linear time) in terms of pseudoprimes for certain second- or third-order linear recurrence sequences. Here, a powerful general theory is described to characterize pseudoprimes for higher-order recurrence sequences. This characterization leads to a broadening and strengthening of practical primality tests based on such pseudoprimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.