Abstract

The dependence on hydrostatic pressure of the electronic and optical properties of zinc-blende AlSb semiconducting material in the pressure range of 0–20kbar has been reported using a pseudopotential approach. At zero pressure, our findings showed that the electron and heavy hole effective masses are 0.11 and 0.38m0, respectively. Moreover, our results yielded values of 3.3289 and 11.08 for refractive index and high frequency dielectric constant, respectively. These results are found to be in good accord with experiment. Upon compression, all physical parameters of interest showed a monotonic behavior. The pressure-induced energy shifts for the optical transition related to band-gaps indicated that AlSb remains an indirect (Г-X) band-gap semiconductor at pressures from 0 to 20kbar. The trend in all features of interest versus pressure has been presented and discussed. It is found that the lattice parameter is reduced from 0.61355 to 0.60705nm when pressure is raised from 0 to 20kbar. The present investigation may be useful for mid-infrared lasers applications, detectors and communication devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call