Abstract

The molecular recognition of short peptides is a challenge in supramolecular chemistry, and the use of peptide-like cage receptors represents a promising approach. Here we report the synthesis and characterization of a diverse family of pseudopeptidic macrobicycles, as well as their binding abilities toward N-protected dipeptides using a combination of different techniques (NMR, ESI-MS, and fluorescence spectroscopy). The cage hosts were assayed for dipeptide binding using competition ESI-MS experiments as high-throughput screening to obtain general trends for the recognition phenomena. Selected hosts were additionally studied by NMR spectroscopy ((1)H NMR titration and diffusion-ordered spectroscopy experiments) in different solvents. The results unambiguously demonstrated the formation of the [cage·dipeptide] supramolecular complexes and rendered quantitative information about the strength of the interaction (K(ass)). The structural variables within the pseudopeptidic cage framework that produced a stronger and more selective recognition were thus identified. The cages showed a remarkable selectivity for N-protected dipeptides with an aromatic amino acid at the carboxylic terminus, which prompted us to propose a mode of binding based on polar and nonpolar noncovalent interactions. Accordingly, we faced the molecular recognition of a target dipeptide (Ac-EY-OH) mimicking a biologically relevant sequence by NMR and fluorescence spectroscopy in highly competitive media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.