Abstract

Multipath scattering, or reverberation, takes a substantial toll on image quality in many clinical exams. We have suggested a model-based solution to this problem, which we refer to as aperture domain model image reconstruction (ADMIRE). For ADMIRE to work well, it must be trained with precisely characterized data. To solve this specific problem and the general problem of efficiently simulating reverberation, we propose an approach to simulate reverberation with linear simulation tools. Our simulation method defines total propagation time, first scattering site, and a final scattering site. We use a linear simulation package, such as Field II, to simulate scattering from the final site and then shift the simulated wavefront later in time based on the total propagation time and the geometry of the first scattering site. We validate our simulations using theoretical descriptions of clutter in the literature and data acquired from ex vivo tissue. We found that ex vivo tissue clutter had a mean speckle SNR of [Formula: see text], which we could simulate with about 2 scatterers per resolution cell. Axial clutter distributions drawn from an exponential distribution with a mean of 5mm and at least 0.5 scatters per resolution cell resulted in clutter that was statistically indistinguishable from the van Cittert-Zernike behavior predicted by literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call