Abstract

Plants express numerous ‘pathogenesis-related’ (PR) proteins to defend themselves against pathogen infection. We recently discovered that PR-proteins such as chitinases, glucanases, peroxidases and thaumatin-like proteins are also functioning in the protection of extrafloral nectar (EFN) of Mexican Acacia myrmecophytes. These plants produce EFN, cellular food bodies and nesting space to house defending ant species of the genus Pseudomyrmex. More than 50 PR-proteins were discovered in this EFN and bioassays demonstrated that they actively can inhibit the growth of fungi and other phytopathogens. Although the plants can, thus, express PR-proteins and secrete them into the nectar, the leaves of these plants exhibit reduced activities of chitinases as compared to non-myrmecophytic plants and their antimicrobial protection depends on the mutualistic ants. When we deprived plants of their resident ants we observed higher microbial loads in the leaves and even in the tissue of the nectaries, as compared to plants that were inhabited by ants. The indirect defence that is achieved through an ant-plant mutualism can protect plants also from infections. Future studies will have to investigate the chemical nature of this mechanism in order to understand why plants depend on ants for their antimicrobial defence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.