Abstract

Pollution of the environment by crude oil and oil products (represented by various types of compounds, mainly aliphatic, mono- and polyaromatic hydrocarbons) poses a global problem. The strain Pseudomonas veronii 7–41 can grow on medium-chain n-alkanes (C8–C12) and polycyclic aromatic hydrocarbons such as naphthalene. We performed a genetic analysis and physiological/biochemical characterization of strain 7–41 cultivated in a mineral medium with decane, naphthalene or a mixture of the hydrocarbons. The genes responsible for the degradation of alkanes and PAHs are on the IncP-7 conjugative plasmid and are organized into the alk and nah operons typical of pseudomonads. A natural plasmid carrying functional operons for the degradation of two different classes of hydrocarbons was first described. In monosubstrate systems, 28.4% and 68.8% of decane and naphthalene, respectively, were biodegraded by the late stationary growth phase. In a bisubstrate system, these parameters were 25.4% and 20.8% by the end of the exponential growth phase. Then the biodegradation stopped, and the bacterial culture started dying due to the accumulation of salicylate (naphthalene-degradation metabolite), which is toxic in high concentrations. The activity of the salicylate oxidation enzymes was below the detection limit. These results indicate that the presence of decane and a high concentration of salicylate lead to impairment of hydrocarbon degradation by the strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call