Abstract

The recovery of Pseudomonas tolaasii applied to peat, limestone and mushroom caps, is very difficult, recovery rates being 0.2–16.0%. Without Agaricus bisporus mycelium, inoculated Ps.tolaasii disappears in the casing layer. As mushroom primordia grew in size on inoculated mushroom beds, the number of detectable cells of the pathogen increased. Symptoms of blotch disease became visible when 5.4 times 106 cfu were detectable, when the mushroom primordia were 6 mm in diameter; 60% of mushrooms showed symptoms before they were 15 mm in diameter. Application of Ps.tolaasii cells as low as 20 cfu/cm2 of bed gave epidemics of this severity. Neither size nor age of mushrooms affects their susceptibility. When Ps.tolaasii was placed directly onto caps, 6 times 107 cfu were necessary to produce a blotch lesion (though only 3.5 times 106 cfu could be recovered). Changes in r.h. and temperature did not affect the numbers of cells of Ps.tolaasii on inoculated caps; very frequent watering did so. Increased severity of the disease was seen only on over‐watered mushrooms; this occurred by increase in the size of lesions seen at the primordium stage. The number of cells of Ps.tolaasii present on the early primordial stages of mushroom growth controls the extent of blotch disease seen at harvesting, whereas variations in r.h. or temperature during growing do not do so. An illustrated disease symptom measurement key (of general application for assessing severity of blotch disease) is included in the text.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call