Abstract
Foliar bacterial pathogens have to penetrate the plant tissue and access the interior of the apoplast in order to initiate the pathogenic phase. The entry process is driven by chemotaxis towards plant‐derived compounds in order to locate plant openings. However, information on plant signals recognized by bacterial chemoreceptors is scarce. Here, we show that the perception of GABA and l‐Pro, two abundant components of the tomato apoplast, through the PsPto‐PscC chemoreceptor drives the entry of Pseudomonas syringae pv. tomato into the tomato apoplast. The recognition of both compounds by PsPto‐PscC caused chemoattraction to both amino acids and participated in the regulation of GABA catabolism. Mutation of the PsPto‐PscC chemoreceptor caused a reduced chemotactic response towards these compounds which in turn impaired entry and reduced virulence in tomato plants. Interestingly, GABA and l‐Pro levels significantly increase in tomato plants upon pathogen infection and are involved in the regulation of the plant defence response. This is an example illustrating how bacteria respond to plant signals produced during the interaction as cues to access the plant apoplast and to ensure efficient infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.