Abstract

BackgroundSoil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Matric stress gives rise to accumulation of intracellular reactive oxygen species (ROS), which in turn may induce oxidative stress, and even promote mutagenesis. However, little is known about the impact of ROS induced by water limitation on bacteria performing important processes as pollutant biodegradation in the environment. We have rigorously examined the physiological consequences of the rise of intracellular ROS caused by matric stress for the toluene- and xylene-degrading soil bacterium Pseudomonas putida mt-2.MethodsFor the current experiments, controlled matric potential stress was delivered to P. putida cells by addition of polyethylene glycol to liquid cultures, and ROS formation in individual cells monitored by a specific dye. The physiological response to ROS was then quantified by both RT-qPCR of RNA transcripts from genes accredited as proxies of oxidative stress and the SOS response along with cognate transcriptional GFP fusions to the promoters of the same genes.ResultsExtensive matric stress at −1.5 MPa clearly increased intracellular accumulation of ROS. The expression of the two major oxidative defense genes katA and ahpC, as well as the hydroperoxide resistance gene osmC, was induced under matric stress. Different induction profiles of the reporters were related to the severity of the stress. To determine if matric stress lead to induction of the SOS-response, we constructed a DNA damage-inducible bioreporter based on the LexA-controlled phage promoter PPP3901. According to bioreporter analysis, this gene was expressed during extensive matric stress. Despite this DNA-damage mediated gene induction, we observed no increase in the mutation frequency as monitored by emergence of rifampicin-resistant colonies.ConclusionsUnder conditions of extensive matric stress, we observed a direct link between matric stress, ROS formation, induction of ROS-detoxifying functions and (partial) activation of the SOS system. However, such a stress-response regime did not translate into a general DNA mutagenesis status. Taken together, the data suggest that P. putida mt-2 can cope with this archetypal environmental stress while preserving genome stability, a quality that strengthens the status of this bacterium for biotechnological purposes.

Highlights

  • Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells

  • Desiccation may increase the endogenous formation of reactive oxygen species (ROS), and a single study has shown that P. putida micro-colonies growing on a medium containing polyethylene glycol with molecular weight of 8000 (PEG-8000), used to simulate matric stress, accumulate more ROS than the corresponding micro-colonies formed under water-replete conditions [12]

  • These results documented that cells experiencing extensive matric stress even in liquid culture accumulate ROS, and prompted us to construct a panel of bioreporters for oxidative stress responses

Read more

Summary

Introduction

Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Previous investigations have addressed the significance of various environmental stressors (e.g., variable nitrogen sources, oxidative stressors, as well as carbon and iron starvation) on transcriptional profiles of catabolic genes in Pseudomonas putida mt-2 [1]. This toluene- and xylene-degrading soil bacterium, carrying the catabolic TOL plasmid pWW0, as well as its plasmid-cured derivative P. putida KT2440, are well studied paradigm organisms for applications in environmental biotechnology [2,3,4,5]. The physiological consequences of ROS accumulation are currently not known in detail

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.