Abstract

An esterase from Pseudomonas putida JD1 (PPE) was successfully cloned, actively expressed in Escherichia coli, and characterized. It was discovered that PPE is more active towards short-chain esters, hydrolyzed δ-valerolactone, and ε-caprolactone and was most active at 37°C and pH 8. After purification to homogeneity by Ni-NTA-assisted affinity chromatography, the kinetic parameters K(M) and k(cat) were determined for p-nitrophenyl acetate and butyrate, respectively, showing better catalytic efficiency for hydrolysis of the acetate residue. Investigation of the protein sequence revealed not only the classical catalytic triad for carboxylesterases, additionally the interesting GGG(A)X-motif, which is associated to activity towards tertiary alcohols, was found. Indeed, enzymatic activity was shown for a set of different tertiary alcohols with enantioselectivities up to E = 20, suggesting PPE to be a promising biocatalyst. In addition, PPE also hydrolyzed 4-hydroxyphenyl acetate, the product of a Baeyer-Villiger monooxygenase-catalyzed oxidation of 4-hydroxyacetophenone with a specific activity of 34.36 U/mg suggesting a physiological role in P. putida JD1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.