Abstract

Many nonsporulating bacterial species survive prolonged resource exhaustion, by entering a state termed long-term stationary phase. Here, we performed long-term stationary phase evolutionary experiments on the bacterium Pseudomonas putida, followed by whole-genome sequencing of evolved clones. We show that P. putida is able to persist and adapt genetically under long-term stationary phase. We observed an accumulation of mutations within the evolving P. putida populations. Within each population, independently evolving lineages are established early on and persist throughout the 4-month-long experiment. Mutations accumulate in a highly convergent manner, with similar loci being mutated across independently evolving populations. Across populations, mutators emerge, that due to mutations within mismatch repair genes developed a much higher rate of mutation than other clones with which they coexisted within their respective populations. While these general dynamics of the adaptive process are quite similar to those we previously observed in the model bacterium Escherichia coli, the specific loci that are involved in adaptation only partially overlap between P. putida and E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.