Abstract

Diverse communities of bacteria colonize plant roots and the rhizosphere. Many of these rhizobacteria are symbionts and provide plant growth promotion (PGP) services, protecting the plant from biotic and abiotic stresses and increasing plant productivity by providing access to nutrients that would otherwise be unavailable to roots. In return, these symbiotic bacteria receive photosynthetically-derived carbon (C), in the form of sugars and organic acids, from plant root exudates. PGP activities have been characterized for a variety of forest tree species and are important in C cycling and sequestration in terrestrial ecosystems. The molecular mechanisms of these PGP activities, however, are less well-known. In a previous analysis of Pseudomonas genomes, we found that the bacterial transportome, the aggregate activity of a bacteria's transmembrane transporters, was most predictive for the ecological niche of Pseudomonads in the rhizosphere. Here, we used Populus tremuloides Michx. (trembling aspen) seedlings inoculated with one of three Pseudomonas fluorescens strains (Pf0-1, SBW25, and WH6) and one Pseudomonas protegens (Pf-5) as a laboratory model to further investigate the relationships between the predicted transportomic capacity of a bacterial strain and its observed PGP effects in laboratory cultures. Conditions of low nitrogen (N) or low phosphorus (P) availability and the corresponding replete media conditions were investigated. We measured phenotypic and biochemical parameters of P. tremuloides seedlings and correlated P. fluorescens strain-specific transportomic capacities with P. tremuloides seedling phenotype to predict the strain and nutrient environment-specific transporter functions that lead to experimentally observed, strain, and media-specific PGP activities and the capacity to protect plants against nutrient stress. These predicted transportomic functions fall in three groups: (i) transport of compounds that modulate aspen seedling root architecture, (ii) transport of compounds that help to mobilize nutrients for aspen roots, and (iii) transporters that enable bacterial acquisition of C sources from seedling root exudates. These predictions point to specific molecular mechanisms of PGP activities that can be directly tested through future, hypothesis-driven biological experiments.

Highlights

  • Forest ecosystems are major components of the biosphere and contribute extensive ecosystem services

  • We have evaluated the effect of four different strains of Pseudomonas on P. tremuloides seedlings in replete media and under conditions of low nitrogen (N) and low phosphorus (P)

  • In order to identify potential mechanisms by which the observed Pseudomonas strain-specific differences in aspen seedling phenotypes might be linked to differential transportomic capacities, we considered the correlation network generated

Read more

Summary

Introduction

Forest ecosystems are major components of the biosphere and contribute extensive ecosystem services. Trees form a significant storage sink in the global carbon (C) cycle, facilitate water fluxes in the hydrologic cycle, and provide wood and fiber for human consumption. The provision of these benefits depends upon the supply and utilization of resources (carbon dioxide, water, nutrients, and light) to and by the tree. Photosynthesis and primary productivity are often limited by nutrient availability (Houlton et al, 2008; Reich et al, 2009; St. Clair et al, 2009), which, in turn, affects the ecological roles and economic output of forests. The plant rhizosphere hosts a large and diverse community of microbes whose interactions with roots and soils influence ecosystem productivity (Lambers et al, 2009; Morgan et al, 2010; Cumming et al, 2015)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.