Abstract

BackgroundPseudomonas fluorescens SBW25 has been extensively studied because of its plant growth promoting properties and potential as a biocontrol agent. The genome of SBW25 has been sequenced, and among sequenced strains of pseudomonads, SBW25 appears to be most closely related to P. fluorescens WH6. In the authors’ laboratories, WH6 was previously shown to produce and secrete 4-formylaminooxyvinylglycine (FVG), a non-proteinogenic amino acid with selective herbicidal and antimicrobial activity. Although SBW25 does not have the genetic capacity to produce FVG, we were interested in determining whether this pseudomonad might produce some other type of non-proteinogenic amino acid.ResultsP. fluorescens SBW25 was found to produce and secrete a ninhydrin-reactive compound with selective antimicrobial properties. This compound was purified from SBW25 culture filtrate and identified as the non-proteinogenic amino acid L-furanomycin [2S,2′R,5′S)-2-amino-2-(5′methyl-2′,5′-dihydrofuran-2′-yl)acetic acid].ConclusionsThe identification of furanomycin as a secondary metabolite of SBW25 is the first report of the production of furanomycin by a pseudomonad. This compound was known previously only as a natural product produced by a strain of Streptomyces. This report adds furanomycin to the small list of non-proteinogenic amino acids that have been identified as secondary products of pseudomonads. This study also extends the list of bacteria that are inhibited by furanomycin to include several plant pathogenic bacteria.

Highlights

  • Pseudomonas fluorescens SBW25 has been extensively studied because of its plant growth promoting properties and potential as a biocontrol agent

  • The P. fluorescens SBW25 genome does not contain the gene cluster we have found to be essential for FVG production, the overall similarity of the WH6 and SBW25 genomes attracted our interest in the latter strain and in the possibility that SBW25 might produce some type of non-proteinogenic amino acid

  • D. dadantii remained sensitive to SBW25 culture filtrate supplemented with glutamine or alanine and to the unmodified filtrate control (Figure 6, Additional file 4). These results indicate that the capacity of P. fluorescens SBW25 culture filtrate to inhibit the growth of D. dadantii 1447 was reversed in the presence of leucine, isoleucine, and valine, but not glutamine or alanine

Read more

Summary

Introduction

Pseudomonas fluorescens SBW25 has been extensively studied because of its plant growth promoting properties and potential as a biocontrol agent. The large genomes of P. fluorescens provide an extensive biochemical repertoire that enables some strains to produce and secrete bioactive molecules that mediate microbe-microbe, plant-microbe, and insect-microbe interactions [6]. These secondary metabolites include antimicrobial compounds like phenazines, polyketides, cyclic lipopeptides, pyrrolnitrin, hydrogen cyanide, and others [6,7]. Because these compounds may play a critical role in both microbial and plant ecology, there is continuing interest in characterizing secondary metabolites produced by isolates of P. fluorescens

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.