Abstract

The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.

Highlights

  • The innate immune system detects microorganisms and rapidly responds to invasion by eliminating them

  • The building blocks of the bacterial flagellum are over a thousand copies of the highly conserved protein flagellin

  • We describe a novel mechanism of P. aeruginosa to escape flagellin recognition

Read more

Summary

Introduction

The innate immune system detects microorganisms and rapidly responds to invasion by eliminating them. Toll-like receptors (TLRs) recognize various evolutionary conserved structures of microorganisms and play a crucial role in innate immune recognition [1]. Stimulation of these receptors triggers intracellular signaling cascades leading to activation of phagocytes and production of pro-inflammatory cytokines. TLRs are type-1 transmembrane proteins characterized by extracellular leucinerich-repeat motifs and an intracellular Toll/interleukin-1 receptor domain. The most studied TLR member is TLR4, which detects the Gram-negative outer membrane component lipopolysaccharide (LPS). TLR5 senses flagellin [2], which is the major component of the bacterial flagellum

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call