Abstract

Regulatory T cells (Tregs) and T helper (Th) 17 cells are two subsets of CD4 + T cells with opposite effects which play a crucial role in the pathogenesis of lung injury. In this study, we aim to investigate the protective effect of Pseudomonas aeruginosa outer membrane vesicles (OMVs) preconditioning on lung ischemia-reperfusion (I/R) injury and potential mechanisms. Pathogen-free C57BL/6 mice were randomly divided into four groups: control, Control + OMVs, I/R and I/R + OMVs groups. Bronchoalveolar lavage fluid (BALF), serum, and lung tissues were collected and analyzed for pathophysiology and immune mechanism. OMVs not only attenuated tissue injury and respiratory physiologic function but also mediated the downregulation of lung wet-to-dry weight ratio and the reduction of total protein concentration. The numbers of total cells, macrophages, neutrophils, and lymphocytes were markedly decreased in the I/R mice following OMVs preconditioning. OMVs also decreased inflammatory cytokines associated with CD4 + T cells in both BALF and serum. In addition, the level of Tregs and its transcription factor forkhead box P3 (Foxp3) were significantly increased, while the level of Th17 cells and its transcription factor retinoid-related orphan receptor γ (RORγt) were significantly decreased following OMVs preconditioning. In the process of exploring the underlying protection mechanisms of OMVs, we found that OMVs preconditioning significantly reduced protein expression of Toll-like receptor 4 (TLR4), which in turn not only inactivated myeloid differentiation factor 88 (MyD88) and Phosphorylated nuclear factor kappa B (p-NF-κB), but also simultaneously increased the levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3). These results suggest that OMVs preconditioning may ameliorate lung I/R injury by regulating the balance of Tregs and Th17 cells through Tim-3 and TLR4/NF-κB pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.