Abstract

ABSTRACTD-mannitol has been approved in dry powder formulation as an effective antimucolytic agent in patients with cystic fibrosis. What is not known is the effect of adding a metabolisable sugar on the biology of chronic bacterial pathogens in the CF lung. Therefore, a series of simple in vitro experiments were performed to examine the effect of adding D-mannitol on the phenotype of the CF respiratory pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia. Clinical isolates (n=86) consisting of P aeruginosa (n=51), B. cenocepacia (n=26), P. putida (n=4), Stenotrophomonas maltophila (n=3) and Pseudomonas spp. (n=2) were examined by supplementing basal nutrient agar with varying concentrations of D-mannitol (0–20% [w/v]) and subsequently examining for any change in microbial phenotype. The effect of supplementation with mannitol was four-fold, namely i) To increase the proliferation and increase in cell density of all CF organisms examined, with an optimal concentration of 2–4% (w/v) D-mannitol. No such increase in cell proliferation was observed when mannitol was substituted with sodium chloride. ii) Enhanced pigment production was observed in 2/51 (3.9%) of the P. aeruginosa isolates examined, in one of the P. putida isolates, and in 3/26 (11.5%) of the B. cenocepacia isolates examined. iii). When examined at 4.0% (w/v) supplementation with mannitol, 11/51 (21.6%) P. aeruginosa isolates and 3/26 (11.5%) B. cenocepacia isolates were seen to exhibit the altered adhesion phenotype. iv). With respect to the altered mucoid phenotype, 5/51 (9.8%) P. aeruginosa produced this phenotype when grown at 4% mannitol. Mucoid production was greatest at 4%, was poor at 10% and absent at 20% (w/v) mannitol. The altered mucoid phenotype was not observed in the B. cenocepacia isolates or any of the other clinical taxa examined. Due consideration therefore needs to be given, where there is altered physiology within the small airways, leading to a potentially altered biological state of the colonising microorganisms in novel inhaled pharmaceutical interventions in CF, particularly those, which are not designated as antimicrobial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.