Abstract

Pseudomonas aeruginosa represents a major cause of health care-associated infections, and inappropriate initial antimicrobial therapy is associated with increased morbidity and mortality. The International Network for Optimal Resistance Monitoring (INFORM) program monitors the in vitro activity of ceftazidime-avibactam and many comparator agents. We evaluated the antimicrobial susceptibility of 7,452 P. aeruginosa isolates collected from 79 U.S. medical centers in 2012 to 2015. The isolates were collected and tested consecutively for susceptibility by broth microdilution method. Infection types included mainly pneumonia (50.5%), skin and skin structure (24.0%), urinary tract (7.8%), and bloodstream (7.7%) infections. The only compounds with >90% susceptibility rates were colistin (MIC50/90, 1/2 mg/liter, respectively; 99.4% susceptible), ceftazidime-avibactam (MIC50/90, 2/4 mg/liter, respectively; 97.0% susceptible), and amikacin (MIC50/90, 2/8 mg/liter, respectively; 97.0/93.0% susceptible [CLSI/EUCAST, respectively]). The addition of avibactam to ceftazidime increased the percentage of susceptible P. aeruginosa isolates from 84.3% to 97.0%. Multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes were observed among 1,151 (15.4%) and 698 (9.4%) isolates, respectively, and ceftazidime-avibactam inhibited 82.1 and 75.8% of these isolates at ≤8 mg/liter, respectively. High rates of cross-resistance were observed with ceftazidime, meropenem, and piperacillin-tazobactam, whereas ceftazidime-avibactam retained activity against isolates nonsusceptible to ceftazidime (81.0% susceptible), meropenem (86.2% susceptible), and piperacillin-tazobactam (85.4% susceptible), as well as isolates nonsusceptible to these three β-lactams (71.2% susceptible). The only antimicrobial combinations that provided a better overall anti-Pseudomonas coverage than ceftazidime-avibactam (97.0% susceptibility rate) were those including amikacin (97.0 to 98.4% coverage). Susceptibility rates remained stable during the study period. The results of this investigation highlight the challenge of optimizing empirical antimicrobial therapy for P. aeruginosa infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.