Abstract

Objective To investigate the impact of Pseudomonas aeruginosa(PA) infection on the function of pulmonary vascular endothelial cells,and explore the mechanism of this bacterium in exacerbating lung inflammation in mice. Methods Two hours after human lung microvascular endothelial cell(HULEC-5a) were infected with the PA strain PAO1,the mRNA levels of autophagy-related gene 5(ATG5),6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3(PFKFB3),and calcium adhesion protein 5(CDH5) were determined by reverse transcription real-time fluorescent quantitative PCR(RT-qPCR).The protein levels of ATG5,PFKFB3,and vascular endothelial calcium adhesion protein(VE-cadherin) were detected by immunofluorescence.After the expression of ATG5 and PFKFB3 was respectively knocked down by small interfering RNA(siRNA),RT-qPCR was employed to measure the mRNA levels of ATG5,PFKFB3,and CDH5,and immunofluorescence to detect the protein levels of PFKFB3 and VE-cadherin.In addition,the lactate assay kit was used to determine the level of lactate in the cells.After mice were infected with PAO1,lung inflammation was assessed through histopathological section staining.Confocal microscopy was employed to capture and analyze fluorescence-labeled PFKFB3 and VE-cadherin in endothelial cells. Results Compared with the control group,the HULEC-5a cells infected with PAO1 showed up-regulated mRNA and protein levels of PFKFB3(all P<0.05),down-regulated mRNA level of CDH5(P=0.023),disrupted continuity and down-regulated protein level of VE-cadherin(P<0.001),and elevated lactate level(P=0.017).Compared with PAO1-infected HULEC-5a cells,knocking down PFKFB3 led to the up-regulated mRNA level of CDH5(P=0.043),lowered lactate level(P=0.047),and restored continuity of VE-cadherin;knocking down ATG5 led to up-regulated mRNA and protein levels of PFKFB3(P=0.013 and P=0.003),elevated lactate level(P=0.015),and down-regulated mRNA level of CDH5(P=0.020) and protein level of VE-cadherin(P=0.001).The HE staining results showed obvious red blood cell leakage,inflammatory cell infiltration,alveolar septal widening,and partial detachment of vascular endothelial cells in the alveoli of PA-infected mice.Immunofluorescence staining showed up-regulated expression of PFKFB3 and decreased fluorescence signal of VE-cadherin in endothelial cells of infected mice compared with normal mice. Conclusion PA may regulate the PFKFB3 pathway via AGT5 to disrupt the function of pulmonary vascular endothelial cells,thereby exacerbating the inflammation in the lungs of mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call