Abstract

In this work, we found that the microbiologically influenced corrosion of Pseudomonas aeruginosa was mediated by Mo in low-alloy steel. Through immersion experiments, we found that the corrosion rate of low-alloy steel was not decreased with the addition of 1.0 wt% Mo. However, in the presence of P. aeruginosa, the corrosion rate of the 1.0 wt% Mo steel was accelerated, resulting in the development of pits. Confocal laser scanning microscopy images revealed that more biofilm cells adhered on the 1.0 wt% Mo steel surface. The chemotactic behavior and swimming ability of the bacteria were the main reason for the greater biofilm cell adhesion in the presence of Mo. Using an RNA-seq assay, we verified that both chemotaxis and motility together affected the adhesion of biofilm, and their related genes were affected by Mo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.