Abstract

The 3 beta-hydroxysteroid dehydrogenase of Pseudomonas testosteroni commercially available was purified by an FPLC step and submitted to sequence determination by peptide analysis. The structure obtained reveals a 253-residue polypeptide chain, with an N-terminal, free alpha-amino group, and a low cysteine content. Comparisons with other hydroxysteroid dehydrogenases recently characterized reveal distant similarities with prokaryotic and, to some extent, also eukaryotic forms of separate specificities. Residue identities with a Streptomyces 20 beta-hydroxysteroid dehydrogenase are 35% and distributed over the entire molecule, whereas residue identities with the mammalian 17 beta-hydroxysteroid dehydrogenase only constitute 20%, and are essentially limited to the N-terminal and central parts, Nevertheless, all these enzymes exhibit a conserved tyrosine residue (position 151 in the present enzyme) noted as possibly having a functional role in some members of this protein family. Combined, the results establish the prokaryotic 3 beta-hydroxysteroid dehydrogenase as belonging to the family of short-chain alcohol dehydrogenases, reveal that the hydroxysteroid dehydrogenases are no more closely related than dehydrogenases with other enzyme activities within the family (e.g. glucose, ribitol, hydroxyprostaglandin dehydrogenases), show several of the mammalian hydroxysteroid dehydrogenases to have subunits of longer size with different patterns of similarity than those of the prokaryotic family members characterized, and define important segments of the coenzyme-binding region for this enzyme group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.