Abstract

Pseudolaric acid B (PAB), a natural product isolated from the root bark of Pseudolarix kaempferi, has been reported to exert inhibitory effects in various cancers. However, the underlying mechanisms remain largely unclear. In the present study, we investigated the mechanism through which PAB exert its anticancer effects in hepatocellular carcinoma (HCC). PAB inhibited the viability of and induced apoptosis in Hepa1–6 cells in a dose-dependent manner. It disrupted mitochondrial membrane potential (MMP) and impaired ATP production. Furthermore, PAB induced phosphorylation of DRP1 at Ser616 and mitochondrial fission. Blocking DRP1 phosphorylation by Mdivi-1 inhibited mitochondrial fission and PAB-induced apoptosis. Moreover, c-Jun N-terminal kinase (JNK) was activated by PAB, and blocking JNK activity using SP600125 inhibited PAB-induced mitochondrial fission and cell apoptosis. Furthermore, PAB activated AMP-activated protein kinase (AMPK), and inhibiting AMPK by compound C attenuated PAB-stimulated JNK activation and blocked DRP1-dependent mitochondrial fission and apoptosis. Our in vivo data confirmed that PAB inhibited tumor growth and induced apoptosis in an HCC syngeneic mouse model by inducing the AMPK/JNK/DRP1/mitochondrial fission signaling pathway. Furthermore, a combination of PAB and sorafenib showed a synergistic effect in inhibiting tumor growth in vivo. Taken together, our findings highlight a potential therapeutic strategy for HCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call