Abstract

The mechanisms of metabolic acidosis and hyperkalemia were investigated in a patient with chronic mineralocorticoid-resistant renal hyperkalemia (5.3-6.9 mmol/l), metabolic acidosis (arterial blood pH 7.27, total CO2 17 mmol/l), arterial hypertension, undetectable plasma renin activity (less than 0.10 ng/ml/h), high plasma aldosterone level (32-100 ng/dl), and normal glomerular filtration rate (131 ml/min/1.73 m2). During the hyperkalemic period, urine was highly acidic (pH 4.6-5.0), urinary NH4 excretion (10-13 microEq/min) and urinary net acid excretion (19-24 microEq/min) were not supernormal as expected from a chronic acid load. During NaHCO3 infusion, the maximal tubular HCO3 reabsorption was markedly diminished (19.8 mmol/l glomerular filtrate), and the fractional excretion of HCO3 (FE HCO3) when plasma HCO3 was normalized was 20%. Urine minus blood PCO2 increased normally during NaHCO3 infusion (31 mm Hg), and the urinary pH remained maximally low (less than 5.3) when the buffer urinary excretion sharply increased after NH4Cl load. When serum K was returned toward normal limits, metabolic acidosis disappeared, urinary NH4 excretion rose normally after short NH4Cl loading while the urinary pH remained maximally low (4.9-5.2), the maximal tubular HCO3 reabsorption returned to normal values (24.8 mmol/l glomerular filtrate), and FE HCO3 at normal plasma HCO3 was 1%. Nasal insufflation of 1-desamino-8-D-Arginine Vasopressin (dDAVP) resulted in an acute normalization of the renal handling of K and in an increase in net urinary acid excretion. We conclude that: the effect of dDAVP on renal handling of K may be explained by the reversal of the distal chloride shunt and/or an increase in luminal membrane conductance to K; the distal acidification seems to be normal which in the event of distal chloride shunt impairing distal hydrogen secretion might be explained by the presence of systemic acidosis which is a potent stimulus of hydrogen secretion, and metabolic acidosis in the steady state was accounted for by the diminution of bicarbonate reabsorption and ammonia production in the proximal tubule secondary to chronic hyperkalemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.