Abstract
We give two characterization theorems for pseudo-Hermitian (possibly nondiagonalizable) Hamiltonians with a discrete spectrum that admit a block-diagonalization with finite-dimensional diagonal blocks. In particular, we prove that for such an operator H the following statements are equivalent: (1) H is pseudo-Hermitian; (2) the spectrum of H consists of real and/or complex-conjugate pairs of eigenvalues and the geometric multiplicity and the dimension of the diagonal blocks for the complex-conjugate eigenvalues are identical; (3) H is Hermitian with respect to a positive-semidefinite inner product. We further discuss the relevance of our findings for the merging of a complex-conjugate pair of eigenvalues of diagonalizable pseudo-Hermitian Hamiltonians in general, and the PT-symmetric Hamiltonians and the effective Hamiltonian for a certain closed FRW minisuperspace quantum cosmological model in particular.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.