Abstract

This article reports the first results on stress induced pseudo-Hall effect in single crystal n-type 3C-SiC(100) grown by LPCVD process. After the growth process, Hall devices were fabricated by standard photolithography and dry etching processes. The bending beam method was employed to study the stress induced changes in the electrical response of the fabricated Hall devices. It has been observed that when stress is applied to the 3C-SiC(100) Hall devices, the offset voltage of the Hall devices varies linearly with the applied compressive and tensile stresses which is called, the pseudo-Hall effect. The variation of the offset voltage of these Hall devices is also proportional to the applied input current. This variation of the offset voltage with the applied compressive and tensile stresses shows that single crystal n-type 3C-SiC(100) can be used for stress sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.