Abstract

In 1998, E. Couselo, S. Gonzalez, V. Markov, and A. Nechaev defined the recursive codes and obtained some results that allowed one to conjecture the existence of recursive MDS-codes of dimension 2 and length 4 over any finite alphabet of cardinality q ∉ {2, 6}. This conjecture remained open only for q ∈ {14, 18, 26, 42}. It is shown in this paper that there exist such codes for q = 42. We used a new construction, that of pseudogeometry with clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.