Abstract

Motivated by similarities between cuprate superconductors and two-leg ladder copper-oxide compounds and in order to obtain a better understanding of optical properties of cuprate superconductors we have studied the c-axis (along the ladder) optical conductivity of a doped two-leg ladder. Using exact diagonalization, we have calculated the conductivity and related quantities for cyclic ladders of up to 13 rungs. In agreement with results of an early study by Hayward and coworkers (Hayward et al 1996 Phys. Rev. B 53 8863) we find that consists of a Drude peak at zero frequency and an absorption band in the infrared region that is separated from the former by a pseudogap. The width of the pseudogap increases with increasing J/t, in parallel with an increase of the magnitude of the gap in the quasiparticle excitation spectra. Our central finding is that , where is the magnitude of the gap in the spin excitation spectra. We demonstrate that this approximate relation can be understood in terms of a phenomenological model involving a superconducting ladder and a coupling between charged quasiparticles and spin excitations. The relation is remarkably similar to the one between experimental values of the energy scale of a dip in the in-plane optical conductivity, the superconducting gap and the energy of the spin-resonance in cuprate superconductors (for a recent discussion of the optical data, see Šopík et al 2015 New J. Phys. 17 053022). Our findings support the point of view that low energy infrared active excited states of cuprate superconductors can be viewed as consisting of two charged quasiparticles connected with pair-breaking and a spin excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.