Abstract
We extend the Ruzhansky–Turunen theory of pseudo-differential operators on compact Lie groups into a tool that can be used to investigate group-valued Markov processes in the spirit of the work in Euclidean spaces of N. Jacob and collaborators. Feller semigroups, their generators and resolvents are exhibited as pseudo-differential operators and the symbols of the operators forming the semigroup are expressed in terms of the Fourier transform of the transition kernel. The symbols are explicitly computed for some examples including the Feller processes associated to stochastic flows arising from solutions of stochastic differential equations on the group driven by Lévy processes. We study a family of Lévy-type linear operators on general Lie groups that are pseudo-differential operators when the group is compact and find conditions for them to give rise to symmetric Dirichlet forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.