Abstract

In density functional theory, each self-consistent field (SCF) nonlinear step updates the discretized Kohn-Sham orbitals by solving a linear eigenvalue problem. The concept of pseudodiagonalization is to solve this linear eigenvalue problem approximately and specifically utilizing a method involving a small number of Jacobi rotations that takes advantage of the good initial guess to the solution given by the approximation to the orbitals from the previous SCF iteration. The approximate solution to the linear eigenvalue problem can be very rapid, particularly for those steps near SCF convergence. We adapt pseudodiagonalization to finite-temperature and metallic systems, where partially occupied orbitals must be individually resolved with some accuracy. We apply pseudodiagonalization to the subspace eigenvalue problem that arises in Chebyshev-filtered subspace iteration. In tests on metallic and other systems for a range of temperatures, we show that pseudodiagonalization achieves similar rates of SCF convergence to exact diagonalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.