Abstract
Using the concept of inner integral curves defined by Hirschowitz we generalize a recent result by Kim, Levenberg and Yamaguchi concerning the obstruction of a pseudoconvex domain spread over a complex homogeneous manifold to be Stein. This is then applied to study the holomorphic reduction of pseudoconvex complex homogeneous manifolds X=G/H. Under the assumption that G is solvable or reductive we prove that X is the total space of a G-equivariant holomorphic fiber bundle over a Stein manifold such that all holomorphic functions on the fiber are constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.