Abstract

Pseudocapacitive asymmetric supercapacitors are promising candidates for achieving high energy density in flexible energy storage devices. However, seeking suitable positive electrode materials that are compatible with negative electrode materials remains a considerable challenge. In the current study, a pseudocapacitive Ti3C2Tx MXene used as negative electrodes is rationally compatible with redox-type V2O5 as positive electrodes, resulting in the assembly of an all-pseudocapacitive Ti3C2Tx MXene//V2O5 asymmetric flexible energy storage device. The solid-state asymmetric device can deliver an energy density of 8.33 mW h cm-3 at a current density of 0.5 A g-1. Moreover, it can operate in an expanded voltage window of 1.5 V, with dominant surface-capacitive charge-storage mechanisms. Additionally, the device can power a yellow light-emitting diode for up to 7 s, indicating the potential of the device for use in practical applications. This study demonstrates the possibility of using other two-dimensional transition-metal carbide nanosheets for high-energy density flexible energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.