Abstract
We define here a pseudo B-Fredholm operator as an operator such that 0 is isolated in its essential spectrum, then we prove that an operator T is pseudo-B-Fredholm if and only if T = R + F where R is a Riesz operator and F is a B-Fredholm operator such that the commutator [R,F] is compact. Moreover, we prove that 0 is a pole of the resolvent of an operator T in the Calkin algebra if and only if T = K + F, where K is a power compact operator and F is a B-Fredholm operator, such that the commutator [K,F] is compact. As an application, we characterize the mean convergence in the Calkin algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.