Abstract
Abstract Coronal mass ejection (CME) events are among the main drivers of geomagnetic disturbances, and hence play a central role in the Sun–Earth system. Their monitoring and, in particular, the determination of their speed and direction of propagation are key issues for the forecasting of space weather near to Earth. We have implemented a method to track CME events in three dimensions by combining triangulation and tie-pointing analysis with a supervised computer vision algorithm. This novel approach does not rely on any geometric constraint, and eliminates the need for visual identification of the CME boundaries. We applied our method to 17 CME events observed simultaneously by the twin Solar Terrestrial Relations Observatory (STEREO) COR2 coronagraph imagers from 2008 December to 2011 November in order to obtain their 3D kinematical characterization (i.e., the velocity vector) along with their morphological properties. About ten of these events have already been analyzed using other methodologies. In these cases, we carried out a thorough comparison with our results and found that, in spite of the different nature and spatial coverage range of the other methods with respect to CORSET3D, the majority of the results agree. We found, however, that three events exhibited discrepancies in the magnitude of the velocity vector, four in the longitudinal direction of propagation, and in only one case was there a discrepancy in latitude. The discrepancies appeared in those cases where quasi-simultaneous, quasi-co-located events were observed in the coronagraphs’ fields of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Astrophysical Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.