Abstract

Scene text presents challenging characteristics mainly related to acquisition circumstances and environmental changes resulting in low quality videos. In this paper, we present a scene text detection algorithm based on pseudo Zernike moments (PZMs) and stroke features from low resolution lecture videos. Algorithm mainly consists of three steps: slide detection, text detection and segmentation and non-text filtering. In lecture videos, slide region is a key object carrying almost all important information; hence slide region has to be extracted and segmented from other scene objects considered as background for later processing. Slide region detection and segmentation is done by applying pseudo Zernike moment's based on RGB frames. Text detection and extraction is performed using PZMs segmentation over V channel of HSV colour space, and then stroke feature is used to filter out non-text region and to remove false positives. The algorithm is robust to illumination, low resolution and uneven luminance from compressed videos. Effectiveness of PZM description leads to very few false positives comparing to other approached. Moreover resulting images can be used directly by OCR engines and no more processing is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.