Abstract
One part of Sylow’s famous theorem in group theory states that the number of Sylow p-subgroups of a finite group is always congruent to 1 modulo p. Conversely, Marshall Hall has shown that not every positive integer occurs as the number of Sylow p-subgroups of some finite group. While Hall’s proof relies on deep knowledge of modular representation theory, we show by elementary means that no finite group has exactly 35 Sylow 17-subgroups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.