Abstract
The existence of a recurrent spinor field on a pseudo-Riemannian spin manifold (M,g) is closely related to the existence of a parallel 1-dimensional complex subbundle of the spinor bundle of (M,g). We characterize the following simply connected pseudo-Riemannian manifolds that admit these subbundles in terms of their holonomy algebras: Riemannian manifolds, Lorentzian manifolds, pseudo-Riemannian manifolds with irreducible holonomy algebras, and pseudo-Riemannian manifolds of neutral signature admitting two complementary parallel isotropic distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.