Abstract
Semi-supervised learning has become a popular technology in recent years. In this paper, we propose a novel semi-supervised medical image classification algorithm, called Pseudo-Labeling Generative Adversarial Networks (PLGAN), which only uses a small number of real images with few labels to generate fake images or mask images to enlarge the sample size of the labeled training set. First, we combine MixMatch to generate pseudo labels for the fake and unlabeled images to do the classification. Second, contrastive learning and self-attention mechanisms are introduced into PLGAN to exclude the influence of unimportant details. Third, the problem of mode collapse in contrastive learning is well addressed by cyclic consistency loss. Finally, we design global and local classifiers to complement each other with the key information needed for classification. The experimental results on four medical image datasets show that PLGAN can obtain relatively high learning performance by using few labeled and unlabeled data. For example, the classification accuracy of PLGAN is 11% higher than that of MixMatch with 100 labeled images and 1000 unlabeled images on the OCT dataset. In addition, we also conduct other experiments to verify the effectiveness of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.